Sirynals＠ud Systems
 Lecture 13：Fourier Series Representation of Periodic Signals（ $\mathbb{P}_{\text {mirt }} 1$ ）

Outline

$>$ Introduction．
$>$ Defining Equations for Fourier series．
\checkmark Trigonometric Fourier series．
\checkmark Compact Trigonometric Fourier series（FS）．
\checkmark Exponential Fourier series．

Examples

Introduction

次 Baron Jean Baptiste Joseph Fourier（1768－1830）introduced the idea that any periodic function can be represented by a series of sines and cosines，which are harmonically related．

Baron Jean Baptiste Joseph Fourier（1768－1830）
准 A continuous time signal $x(t)$ is said to be periodic if $x(t)=x(t+T)$ ，for all t ．
＞Examples of basic periodic signals：

$$
\begin{aligned}
& x(t)=\cos \left(\omega_{0} t\right) \rightarrow \text { Real sinusoid. } \\
& x(t)=e^{j \omega_{0} t} \rightarrow \text { Complex exponential } \\
& \text { Where } \\
& \omega_{0}=\frac{2 \pi}{T_{0}}=2 \pi f_{0}
\end{aligned}
$$

$>\mathrm{e}^{\mathrm{jk} \omega_{0} \mathrm{t}} \Rightarrow$ Harmonically Related $\Rightarrow \frac{T_{0}}{k}=\frac{2 \pi}{k \omega_{0}}$
放 An approximation of the periodic signal $x(t)$ can built up by adding appropriate combination of harmonics to the fundamental harmonic， this sum is called a Fourier series．

Defining Equations for Fourier series

1）Trigonometric Fourier series（Trigonometric CTFS）
粦 Arbitrary periodic signal can be expressed as a linear combination of sinusoidal signals，the periodic signal $x(t)$ can be split up as Sines and Cosines of fundamental frequency ω_{0} and all of its harmonies and expressed as given below：

$$
x(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cdot \cos \left(k \omega_{0} t\right)+\sum_{k=1}^{\infty} b_{k} \cdot \sin \left(k \omega_{0} t\right)
$$

\checkmark Where k from 1 to $\infty \Rightarrow$ Positive frequency．
$\checkmark a_{0}$－Zero harmonic or Dc，Average value．
\checkmark Where $\omega_{0}=\frac{2 \pi}{T_{0}}$ is the fundamental frequency of $x(t)$ and coefficients a_{0}, a_{k} ，and b_{k} are referred to as the trigonometric CTFS coefficients．The coefficients are calculated as follows：

$$
\begin{aligned}
& a_{0}=\frac{1}{T_{0}} \int_{\left\langle T_{0}\right\rangle} x(t) d t \\
& a_{k}=\frac{2}{T_{0}} \int_{\left\langle T_{0}\right\rangle} x(t) \cdot \cos \left(k \omega_{0} t\right) d t \\
& b_{k}=\frac{2}{T_{0}} \int_{\left\langle T_{0}\right\rangle} x(t) \cdot \sin \left(k \omega_{0} t\right) d t
\end{aligned}
$$

$$
T_{0}=\frac{1}{f_{0}}=\frac{2 \pi}{\omega_{0}}
$$

T_{0}－Fundamental period in seconds f_{0}－Fundamental frequency in Hertz ω_{0}－Radian frequency in rad／sec

2）Compact Trigonometric Fourier series（FS）
粼 The trigonometric FS can be represented in compact form．It is also called polar FS：
准＂When $x(t)$ is real，the coefficients of trigonometric form a_{k} and b_{k} are real．
＊The compact form of FS is given by the following

$$
x(t)=C_{0}+\sum_{k=1}^{\infty} C_{k} \cdot \cos \left(k \omega_{0} t-\theta_{k}\right)
$$

\checkmark Where k from 1 to $\infty \Rightarrow$ Positive frequency．
\checkmark Where：

$$
C_{0}=a_{0}=\frac{1}{T_{0}} \int_{\left\langle T_{0}\right\rangle} x(t) d t
$$

$$
\begin{aligned}
C_{k} & =\sqrt{a_{k}^{2}+b_{k}^{2}} \\
\theta_{k} & =\tan ^{-1}\left(\frac{b_{k}}{a_{k}}\right)
\end{aligned}
$$

3）Exponential Fourier series
淮 General periodic signal $x(t)$ can be represented as a linear combination of harmonically related complex exponentials

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} \cdot e^{j k \omega_{0} t}
$$

$\checkmark a_{k}$－Complex：

$$
\begin{aligned}
a_{k} & =A_{k} e^{j \theta_{k}}=B_{k}+j C_{k} \\
a_{k} & =A_{k} e^{j \theta_{k}} \Rightarrow \text { Polar form } \\
a_{k} & =B_{k}+j C_{k} \Rightarrow \text { Rectangular form }
\end{aligned}
$$

\checkmark Where k from $-\infty$ to $\infty \Rightarrow$ positive and negative frequency．
$\checkmark k \omega_{0}$－Frequencies that are positive and negative．
浶 Two Questions are important in this form：
1）How to determine these coefficients．
2）How a broad of class signal，can be represented using exponential FS．

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{\infty} a_{k} \cdot e^{j k \omega_{0} t} \Rightarrow \quad \text { (Synthesis equation) } \\
& a_{k}=\frac{1}{T_{0}} \int_{\left\langle T_{0}\right\rangle} x(t) \cdot e^{-j k \omega_{0} t} \Rightarrow \quad \text { (Analysis equation) }
\end{aligned}
$$

Note：Using Euler＇s identity，the trigonometric form can be represented using exponential form：

$$
e^{j k \omega_{0} t}=\cos \left(k \omega_{0} t\right)+j \sin \left(k \omega_{0} t\right)
$$

Note：a_{k} calculation in Exponential form is much easier compared to a_{0}, a_{k}, b_{k} in trigonometric form．
数 $x(t)$ and a_{k} are represented by the FS pair，as

$$
\begin{aligned}
& x(t) \Leftrightarrow a_{k} . \\
& x(t) \Leftrightarrow X(k) \quad \text { different sources/Books. }
\end{aligned}
$$

柆 $X(k)$ are related to trigonometric FS coefficients a_{0}, a_{k} ，and b_{k} as：

$$
\begin{aligned}
& X(0)=a_{0} \\
& X(k)=\frac{1}{2}\left(a_{k}-j b_{k}\right) \\
& X^{*}(k)=\frac{1}{2}\left(a_{k}+j b_{k}\right)
\end{aligned}
$$

Where $X^{*}(k)$ conjugate of $X(k)$ ．
Notes related to trigonometric FS form 1
$>$ If the periodical function $x(t)$ is symmetrical with respect to the time axis，the coefficient $a_{0}=0$ ．
$>$ If $x(t)$ is even function, only cosine terms in FS exist and therefore $b_{k}=0$.
$>$ If $x(t)$ is odd function, only sine terms in FS exist, then $a_{k}=0$.
粼 In the sciences and engineering, the process of decomposing a function (signal) into simpler pieces is often called Fourier analysis, while the operation of rebuilding the function from these pieces is Fourier synthesis.
** Synthesis equation: $x(t)=\sum_{k=-\infty}^{\infty} a_{k} \cdot e^{j k \omega_{0} t}$ can be rewritten as:

$$
\left.x(t)=a_{0}+\left(a_{-1} e^{-j \omega_{0} t}+a_{1} e^{j \omega_{0} t}\right)+a_{-2} e^{-j 2 \omega_{0} t}+a_{2} e^{j 2 \omega_{0} t}\right)+\cdots
$$

$>$ Where $a_{0} \rightarrow$ the first component \rightarrow dc value.
$>$ The second component ($\left.a_{-1} e^{-j \omega_{0} t}+a_{1} e^{j \omega_{0} t}\right)$ is referred to as the first harmonic with ω_{0}.
$>$ The third component is second harmonic with twice fundamental frequency $2 \omega_{0}$.
$>$ In general the component for $k= \pm N$ are referred to as the N-th harmonic with Frequency $N \omega_{0}$.

Examples

1) Find the Fourier series coefficients for the signal $x(t)=\cos \left(\omega_{0} t\right)$.

Solution: Using Euler's relation:

$$
x(t)=\cos \left(\omega_{0} t\right)=\frac{1}{2} e^{j \omega_{0} t}+\frac{1}{2} e^{-j \omega_{0} t}
$$

The fundamental frequency is ω_{0} and

$$
\begin{aligned}
& a_{0}=0(\text { dc value }) \\
& a_{1}=\frac{1}{2} \\
& a_{-1}=\frac{1}{2} \\
& a_{k}=0 \text { for } k \neq \pm 1
\end{aligned}
$$

Note that

$$
a_{-k}=a_{k}^{*}
$$

2) Find the Fourier Series coefficients for $x(t)=\sin \left(\omega_{0} t\right)$.

Solution:

$$
x(t)=\sin \left(\omega_{0} t\right)=\frac{1}{2 j} e^{j \omega_{0} t}-\frac{1}{2 j} e^{-j \omega_{0} t}
$$

The fundamental frequency is ω_{0} and

$$
\begin{aligned}
& a_{0}=0 \text { (dc value) } \\
& a_{1}=\frac{1}{2 j} \\
& a_{-1}=\frac{-1}{2 j} \\
& a_{k}=0 \text { for } k \neq \pm \mathbb{1}
\end{aligned}
$$

Note that

$$
a_{-k}=a_{k}^{*}
$$

3) Find the Fourier series coefficients for

$$
x(t)=1+\frac{1}{6} \cos (2 \pi t)+\frac{1}{3} \cos (4 \pi t)+\cos (6 \pi t)
$$

Solution:

$$
\begin{array}{r}
x(t)=1+\frac{1}{6} \cos (2 \pi t)+\frac{1}{3} \cos (4 \pi t)+\cos (6 \pi t)= \\
1+\frac{1}{12} e^{j 2 \pi t}+\frac{1}{12} e^{-j 2 \pi t}+\frac{1}{6} e^{j 4 \pi t}+\frac{1}{6} e^{-j 4 \pi t}+\frac{1}{2} e^{j 6 \pi t}+\frac{1}{2} e^{-j 6 \pi t}
\end{array}
$$

The fundamental frequency is $\omega_{0}=2 \pi$ and

$$
\begin{aligned}
& a_{0}=1(\text { dc value }) \\
& a_{1}=a_{-1}=\frac{1}{12} \\
& a_{2}=a_{-2}=\frac{1}{6} \\
& a_{3}=a_{-3}=\frac{1}{2} \\
& a_{k}=0 \text { for }^{3} k \neq 0, \pm 1, \pm 2, \pm 3 \\
& x(t)=\sum_{k=-3}^{3} a_{k} \cdot e^{j k 2 \pi}
\end{aligned}
$$

