

Signals and Systems

Lecture 13: Fourier Series Representation of Periodic Signals (Part 1)

Outline

- > Introduction.
- Defining Equations for Fourier series.
 - ✓ Trigonometric Fourier series.
 - ✓ Compact Trigonometric Fourier series (FS).
 - ✓ Exponential Fourier series.
- Examples

Introduction

* Baron Jean Baptiste Joseph Fourier (1768–1830) introduced the idea that any periodic function can be represented by a series of sines and cosines, which are harmonically related.

Baron Jean Baptiste Joseph Fourier (1768–1830)

* A continuous time signal x(t) is said to be periodic if x(t) = x(t+T), for all t.

> Examples of basic periodic signals:

- $x(t) = \cos(\omega_0 t) \rightarrow \text{Real sinusoid.}$
- $x(t) = e^{j\omega_0 t} \rightarrow$ Complex exponential

$$\omega_0 = \frac{2\pi}{T_0} = 2\pi f_0$$

 \succ e^{jkω₀t} ⇒ Harmonically Related ⇒ $\frac{T_0}{k} = \frac{2\pi}{kω_0}$

* An approximation of the periodic signal x(t) can built up by adding appropriate combination of harmonics to the fundamental harmonic, this sum is called a Fourier series.

Defining Equations for Fourier series

- 1) Trigonometric Fourier series (Trigonometric CTFS)
- * Arbitrary periodic signal can be expressed as a linear combination of sinusoidal signals, the periodic signal x(t) can be split up as Sines and Cosines of fundamental frequency ω_0 and all of its harmonies and expressed as given below:

$$x(t) = a_0 + \sum_{k=1}^{\infty} a_k \cdot \cos(k\omega_0 t) + \sum_{k=1}^{\infty} b_k \cdot \sin(k\omega_0 t)$$

- ✓ Where *k* from 1 to ∞ \Rightarrow Positive frequency.
- $\checkmark a_0$ Zero harmonic or Dc, Average value.
- ✓ Where $\omega_0 = \frac{2\pi}{T_0}$ is the fundamental frequency of x(t) and coefficients a_0 , a_k , and b_k are referred to as the trigonometric CTFS coefficients. The coefficients are calculated as follows:

$$a_{0} = \frac{1}{T_{0}} \int_{\langle T_{0} \rangle} x(t) dt$$
$$a_{k} = \frac{2}{T_{0}} \int_{\langle T_{0} \rangle} x(t) \cdot \cos(k\omega_{0}t) dt$$
$$b_{k} = \frac{2}{T_{0}} \int_{\langle T_{0} \rangle} x(t) \cdot \sin(k\omega_{0}t) dt$$

 $T_0 = \frac{1}{f_0} = \frac{2\pi}{\omega_0}$ T_0 - Fundamental period in seconds f_0 - Fundamental frequency in Hertz ω_0 - Radian frequency in rad/sec

- 2) Compact Trigonometric Fourier series (FS)
- * The trigonometric FS can be represented in compact form. It is also called polar FS:
- * "When x(t) is real, the coefficients of trigonometric form a_k and b_k are real.
- * The compact form of FS is given by the following

$$x(t) = C_0 + \sum_{k=1}^{\infty} C_k \cdot \cos(k\omega_0 t - \theta_k)$$

✓ Where k from 1 to ∞ ⇒ Positive frequency. ✓ Where:

$$C_0 = a_0 = \frac{1}{T_0} \int_{\langle T_0 \rangle} x(t) dt$$

Dr. Qadri Hamarsheh

$$C_k = \sqrt{a_k^2 + b_k^2}$$
$$\theta_k = tan^{-1} \left(\frac{b_k}{a_k}\right)$$

3) Exponential Fourier series

* General periodic signal x(t) can be represented as a linear combination of harmonically related complex exponentials

$$x(t) = \sum_{k=-\infty}^{\infty} a_k \cdot e^{jk\omega_0 t}$$

 $\checkmark a_k$ – Complex:

$$a_{k} = A_{k}e^{j\theta_{k}} = B_{k} + jC_{k}$$

$$a_{k} = A_{k}e^{j\theta_{k}} \Rightarrow Polar form$$

$$a_{k} = B_{k} + jC_{k} \Rightarrow Rectangular form$$

✓ Where k from $-\infty$ to ∞ ⇒ positive and negative frequency.

 $\checkmark k\omega_0$ - Frequencies that are positive and negative.

***** Two Questions are important in this form:

1) How to determine these coefficients.

2) How a broad of class signal, can be represented using exponential FS.

$$x(t) = \sum_{k=-\infty}^{\infty} a_k \cdot e^{jk\omega_0 t} \quad \Rightarrow \quad (Synthesis equation)$$
$$a_k = \frac{1}{T_0} \int_{\langle T_0 \rangle} x(t) \cdot e^{-jk\omega_0 t} \quad \Rightarrow \quad (Analysis equation)$$

* Note: Using Euler's identity, the trigonometric form can be represented using exponential form:

 $e^{jk\omega_0t} = \cos(k\omega_0t) + j\sin(k\omega_0t)$

- * Note: a_k calculation in Exponential form is much easier compared to a_0, a_k, b_k in trigonometric form.
- * x(t) and a_k are represented by the FS pair, as

$$a(t) \Leftrightarrow a_k$$

 $x(t) \Leftrightarrow X(k)$ different sources/Books.

* X(k) are related to trigonometric FS coefficients a_0, a_k , and b_k as:

$$X(0) = a_0$$

$$X(k) = \frac{1}{2}(a_k - jb_k)$$

$$X^*(k) = \frac{1}{2}(a_k + jb_k)$$

Where $X^*(k)$ conjugate of X(k).

- * Notes related to trigonometric FS form 1
 - > If the periodical function x(t) is symmetrical with respect to the time axis, the coefficient $a_0 = 0$.

Dr. Qadri Hamarsheh

- > If x(t) is even function, only cosine terms in FS exist and therefore $b_k = 0$.
- > If x(t) is odd function, only sine terms in FS exist, then $a_k = 0$.
- * In the sciences and engineering, the process of decomposing a function (signal) into simpler pieces is often called Fourier analysis, while the operation of rebuilding the function from these pieces is Fourier synthesis.

* Synthesis equation: $x(t) = \sum_{k=-\infty}^{\infty} a_k \cdot e^{jk\omega_0 t}$ can be rewritten as:

$$x(t) = a_0 + (a_{-1} e^{-j\omega_0 t} + a_1 e^{j\omega_0 t}) + a_{-2} e^{-j2\omega_0 t} + a_2 e^{j2\omega_0 t}) + \cdots$$

- ▶ Where $a_0 \rightarrow$ the first component \rightarrow dc value.
- > The second component $(a_{-1} e^{-j\omega_0 t} + a_1 e^{j\omega_0 t})$ is referred to as the first harmonic with ω_0 .
- > The third component is second harmonic with twice fundamental frequency $2\omega_0$.
- > In general the component for $k = \pm N$ are referred to as the N-th harmonic with Frequency $N\omega_0$.

Examples

1) Find the Fourier series coefficients for the signal $x(t) = cos(\omega_0 t)$. Solution: Using Euler's relation:

$$x(t) = \cos(\omega_0 t) = \frac{1}{2}e^{j\omega_0 t} + \frac{1}{2}e^{-j\omega_0 t}$$

The fundamental frequency is ω_0 and

$$a_{0} = 0 (dc value)$$

$$a_{1} = \frac{1}{2}$$

$$a_{-1} = \frac{1}{2}$$

$$a_{k} = 0 for \quad k \neq \pm$$

Note that

$$a_{-k} = a_{l}^{*}$$

2) Find the Fourier Series coefficients for $x(t) = sin(\omega_0 t)$. Solution:

$$x(t) = \sin(\omega_0 t) = \frac{1}{2j}e^{j\omega_0 t} - \frac{1}{2j}e^{-j\omega_0 t}$$

1

The fundamental frequency is ω_0 and

$$a_{0} = 0 (dc value)$$

$$a_{1} = \frac{1}{2j}$$

$$a_{-1} = \frac{-1}{2j}$$

$$a_{k} = 0 for \quad k \neq \pm 1$$
Note that
$$a_{-k} = a_{k}^{*}$$

Dr. Qadri Hamarsheh

3) Find the Fourier series coefficients for

$$x(t) = 1 + \frac{1}{6} \cos(2\pi t) + \frac{1}{3} \cos(4\pi t) + \cos(6\pi t)$$

Solution:

$$x(t) = 1 + \frac{1}{6} \cos(2\pi t) + \frac{1}{3} \cos(4\pi t) + \cos(6\pi t) =$$

$$1 + \frac{1}{12}e^{j2\pi t} + \frac{1}{12}e^{-j2\pi t} + \frac{1}{6}e^{j4\pi t} + \frac{1}{6}e^{-j4\pi t} + \frac{1}{2}e^{j6\pi t} + \frac{1}{2}e^{-j6\pi t}$$
The fundamental frequency is $\omega_0 = 2\pi$ and
 $a_0 = 1$ (dc value)
 $a_1 = a_{-1} = \frac{1}{12}$
 $a_2 = a_{-2} = \frac{1}{6}$
 $a_3 = a_{-3} = \frac{1}{2}$
 $a_k = 0$ for $k \neq 0, \pm 1, \pm 2, \pm 3$
 $x(t) = \sum_{k=-3}^{3} a_k \cdot e^{jk2\pi}$